
1 - 10 Parametric representations
What curves are represented by the following? Sketch them.

1.  {3 + 2 Cos[t], 2 Sin[t], 0}

ParametricPlot3D[{3 + 2 Cos[t], 2 Sin[t], 0}, {t, 0, 2 π}, ImageSize → 300]
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Above: this is a circle. Center {3, 0}, radius 2.

3. 0, t, t3

ParametricPlot3D0, t, t3, {t, 0, 2 π}, AspectRatio → 1, ImageSize → 300

-−1.0-−0.50.00.51.0

0 2 4 6
0

100

200



Above: this looks like half of a ‘u’ shape. The text answer calls it a cubic parabola.

5.  {2 + 4 Cos[t], 1 + Sin[t], 0}

ParametricPlot3D[{2 + 4 Cos[t], 1 + Sin[t], 0}, {t, 0, 2 π},
AspectRatio → 1, ImageSize → 300, PlotStyle → Thickness[0.004]]
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Above: this looks like an ellipse.

7.  {4 Cos[t], 4 Sin[t], 3 t}

ParametricPlot3D[{4 Cos[t], 4 Sin[t], 3 t}, {t, 0, 2 π},
AspectRatio → 1, ImageSize → 300, PlotStyle → Thickness[0.004]]
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Above: this is a helix.

9.  {Cos[t], Sin[2 t], 0}

ParametricPlot3D[{ Cos[t], 1 + Sin[2 t], 0}, {t, 0, 2 π},
AspectRatio → 1, ImageSize → 300, PlotStyle → Thickness[0.004]]
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Above: this is a figure-8, a “Lissajous”.

11 - 20 Find a parametric representation

11.  Circle in the plane z = 1 with center {3, 2} and passing through the origin.

ClearAll["Global`*⋆"]

I need the radius.
e1 = Norm[{3, 2}]

13
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e2 = ParametricPlot

3 + 13 Cos[t], 2 + 13 Sin[t], {t, 0, 2 π}, ImageSize → 300
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The above result in 2D shows that the equation works.  Only necessary to add the z-plane 
requirement.

e3 = ParametricPlot3D

3 + 13 Cos[t], 2 + 13 Sin[t], 1, {t, 0, 2 π}, ImageSize → 300

0.00.51.0
1.52.0

0

2

4

6
0

2

4

With the pseudo-parallax effect, it is hard to tell whether the origin is part of the circle.
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e4 = Solve3 + 13 Cos[t] ⩵ 0 && 2 + 13 Sin[t] ⩵ 0

t → ConditionalExpression-−π + ArcTan
2

3
 + 2 π C[1], C[1] ∈ Integers

e5 = Nπ + ArcTan
2

3


3.7296

Since this result points to a number in the defining interval of the function, I take it to show 
that (0,0,1) is in the circle.

13.  Straight line through {2, 1, 3} in the direction of i + 2j.

ClearAll["Global`*⋆"]

Show[ParametricPlot3D[{u + 2, 2 u + 1, 3}, {u, -−3, 3},
PlotStyle → {Red, Thickness[0.03], Opacity[.2]}, ImageSize → 200],

ParametricPlot3D[{t + 2, 2 t + 1, 3}, {t, -−3, 3},
PlotStyle → {Black, Thickness[0.003]}], ParametricPlot3D[
{t + 1, 2 t + 2, 0}, {t, -−3, 3}, PlotStyle → {Teal, Thickness[0.003]}],

ListPointPlot3D[{{2, 1, 3}, {1, 2, 0}}, PlotStyle → Blue], Graphics3D[
{Text["2,1,3", {2.2, 1.2, 3.2}], Text["1,2,0", {1.2, 2.2, .2}]}]]

The red line goes through the specified point and has the same direction as [1,2,0]. The 
text answer line (black) runs inside the red line.

15.  Straight line y = 4x -1, z = 5x.

ClearAll["Global`*⋆"]

Solve[y ⩵ 4 x -− 1 && z ⩵ 5 x && x ⩵ 1]

{{x → 1, y → 3, z → 5}}

Solve[y ⩵ 4 x -− 1 && z ⩵ 5 x && x ⩵ 4]

{{x → 4, y → 15, z → 20}}
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e1 = Show[ParametricPlot3D[{3 u + 1, 12 u + 3, 15 u + 5}, {u, -−3, 3},
PlotStyle → {Red, Thickness[0.005], Opacity[.4]}], ParametricPlot3D[
{t, 4 t -− 1, 5 t}, {t, -−3, 3}, PlotStyle → Thickness[0.003]],

ListPointPlot3D[{{1, 3, 5}, {4, 15, 20}}, PlotStyle → Red]]

Above: the line shown meets the requirements. The text answer line is shown within.

17. Circle 1
2 x

2 + y2 = 1, z = y.

ClearAll["Global`*⋆"]

This didn’t look like a circle when I first did the problem. This problem is treated in the 
s.m., so I take that general direction. It looks like an ellipse, and the form of the equation 
can be changed.
e1= x2

 2 
2 + y2 = 1. From the general form, it can be seen that it is an ellipse with semi-

major axis of 2 . Putting that into parametric form would be  2 cos u+a)+(sin u+b), 

where the a and b are center locations. Here both are zero.
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ParametricPlot3D 2 Cos[u], Sin[u], Sin[u], {u, 0, 2 Pi},

AxesLabel → {x, y, z}, PlotStyle → Thickness[0.004], ImageSize → 300

-−1

0

1

x

-−1.0

-−0.5

0.0

0.5

1.0

y

-−1.0

-−0.5

0.0

0.5

1.0

z

The z part of the equation just mirrors y, it’s not necessary to ponder what effect it might 
have.  But after it is plotted, it can be seen to be a true circle, due to that z component, 
which represents its tilt away from the xy-plane. 

19.  Hyperbola 4x2 - 3y2, z = -2

ClearAll["Global`*⋆"]

Hyperbola. I looked this one up before. The parametric version is a
cos t , b tan t. In this case 

a = 1, b = -− 3
2 .
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ShowParametricPlot3D
1

Cos[u]
, -−

3

2
Tan[u], -−2,

{u, 0, 2 π}, Exclusions → {Cos[u] ⩵ 0}, ImageSize → 300,
PlotStyle → {Thickness[0.015], Opacity[.4]}, ParametricPlot3D

Cosh[t],
3

2
Sinh[t], -−2, -−Cosh[t],

3

2
Sinh[t], -−2,

{t, -−2 π, 2 π}, ImageSize → 300, PlotStyle → {Red, Thickness[0.003]}

Three things going on here. The first is my own plot of the hyperbola, skinny black. The 
second and third are the fatter versions of the hyperbola, but only the red one is contained 
in the text answer. It seems deficient to me because it is necessary to show two functions in 
order to get both sides of the hyperbola.

21.  Orientation. Explain why setting t = -t* reverses the orientation of {a Cos[t], a 
Sin[t], 0}.

This follows example 1 on p. 382. The answer to the reversed orientation is simply the way 
the functions work. Plotting a small segment of the example function,

p1 = ParametricPlot{2 Cos[t], 2 Sin[t]}, t, 0,
π

2
, ImageSize → 140,

AspectRatio → 1, PlotStyle → Blue, PlotRange → {{-−2, 2.1}, {-−2.1, 2}};

p2 = ParametricPlot{2 Cos[-−t], 2 Sin[-−t]}, t, 0,
π

2
,

ImageSize → 140, AspectRatio → 1, PlotStyle → Red;
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Show[{p1, p2}]

-−2 -−1 1 2

-−2

-−1

1

2

Obviously, trig functions are sensitive to signs.

23. CAS project. Famous curves in polar form. Use your CAS to graph the following 
curves given in polar form ρ = ρ(θ), ρ2 = x2 + y2, Tan[θ] = yx , and investigate their form 
depending on parameters a and b.

ρ = a θ Spiral of Archimedes
ρ = a ⅇb θ Logarithmic spiral

ρ = 2 a Sin[θ]2

Cos[θ] Cissoid of Diocles

ρ = a
Cos[θ] + b Conchoid of Nicomedes

ρ = a
θ

Hyperbolic spiral

ρ = 3 a Sin[2 θ]
Cos[θ]3+Sin[θ]3

Folium of Descartes

ρ = 2 a Sin[3 θ]
Sin[2 θ]

Maclaurin' s trisectrix

ρ = 2 a Cos[θ] + b Pascal' s snail

(a) Spiral of Archimedes

Plot found on MathWorld.
ParametricPlot[t {Cos[t], Sin[t]}, {t, 0, 6 Pi}, Ticks → None,
PlotStyle → {Red, Thickness[0.006]}, ImageSize → 150]

(b) Logarithmic spiral.

Plot found on MathWorld.
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PolarPlotⅇ.2 t, {t, 0, 8 π}, PlotStyle → {Red, Thickness[0.006]},

Ticks → None, PlotRange → All, ImageSize → 150

(c) Cissoid of Diocles
Plot found on MathWorld.

ParametricPlot2 Sin[t]2,
2 Sin[t]3

Cos[t]
, {t, -−1.5, 1.5},

PlotRange → {-−3, 3}, Ticks → None, PlotStyle → Red, ImageSize → 150

(d) Conchoid of Nicomedes
Plot found on MathWorld.
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GraphicsGridPartitionWitheps = 10-−5, Function[a, Show[
PolarPlot[1 + a Sec[θ], Evaluate[{θ, #[[1]] + eps, #[[2]] -− eps}],

PlotStyle → {Red, Thickness[0.014]}] & /∕@ Partition[
Range[0, 2, 1 /∕ 2] π, 2, 1], PlotRange → {{-−1, 3}, {-−2, 2}},

Ticks → None, PlotLabel → ToExpression["a"] ⩵
(a /∕. HoldPattern[Rational[x__]] ⧴ InlineFraction[x])]] /∕@

{0, .005, .1, .25, .5, .75, 1, 1.1, 1.5, 2}
, 4, 4, {1, 1}, {}, ImageSize → 400, AspectRatio → 0.6

a ! 0 a ! 0.005 a ! 0.1 a ! 0.25

a ! 0.5 a ! 0.75 a ! 1 a ! 1.1

a ! 1.5 a ! 2

(e) Hyperbolic spiral
Plot found on MathWorld.
PolarPlot[1 /∕ θ, {θ, 0.001, 100}, PlotStyle → {Red, Thickness[0.002]},
Ticks → None, ImageSize → 300, PlotRange → {{-−.15, 0.18}, {-−0.15, 0.15}}]

(f) Folium of Descartes
Plot found on MathWorld.
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ContourPlotx3 + y3 ⩵ 3 x y, {x, -−3, 3}, {y, -−3, 3},
ContourStyle → {Red, Thickness[0.004]}, AspectRatio → Automatic,
Frame → False, Axes → True, ImageSize → 200
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(g) Maclaurin' s trisectrix
Plot found on MathWorld.

ParametricPlot{1, t} (t^2 -− 3)  (t^2 + 1), {t, -−4, 4},
AspectRatio → Automatic, PlotRange → {{-−3, 1}, {-−3, 3}},
PlotStyle → {Red, Thickness[0.006]}, ImageSize → 150
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(h) Pascal' s snail
Plot found on MathWorld.
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ParametricPlot[(1 + # Cos[t]) {Cos[t], Sin[t]}, {t, 0, 2 π},
ImageSize → 100, PlotStyle → {Red, Thickness[0.01]},
Ticks -−> None] & /∕@ {0, .1, .5, 1, 2, 3}

 , , ,

, , 

24 - 28 Tangent
Given a curve C: r[t], find a tangent vector r '[t], a unit tangent vector 
u '[t], and the tangent of C at P. Sketch curve and tangent.

25.  r[t] = {10 Cos[t], 1, 10 Sin[t]}, P : {6, 1, 8}

ClearAll["Global`*⋆"]

e1 = Solve[10 Cos[t] ⩵ 6 && 10 Sin[t] ⩵ 8]

t → ConditionalExpressionArcTan
4

3
 + 2 π C[1], C[1] ∈ Integers

e2 = e1[[1, 1, 2, 1]]

ArcTan
4

3
 + 2 π C[1]

e3 = e2 /∕. C[1] → 0

ArcTan
4

3


Above: this is the value that satisfies the problem vector function for the given point.
e4 = r[t_] = {10 Cos[t], 1, 10 Sin[t]}

{10 Cos[t], 1, 10 Sin[t]}

e5 = rArcTan
4

3


{6, 1, 8}
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The above shows that P corresponds to t = ArcTan 4
3  with regard to the given function r.

e6 = r'ArcTan
4

3


{-−8, 0, 6}

e7 = e5 + w e6

{6 -− 8 w, 1, 8 + 6 w}

Above: this is the tangent of C:r[t] at P, called Q(w).

Below: using the (8) on p. 384 of the text, I find the unit tangent at P,
e8 = r'[t]

{-−10 Sin[t], 0, 10 Cos[t]}

e9 = Norm[e8]

100 Abs[Cos[t]]2 + 100 Abs[Sin[t]]2

e10 = FullSimplify[e9]

10 Abs[Cos[t]]2 + Abs[Sin[t]]2

e11 = 10 /∕. Abs[Cos[t]]2 + Abs[Sin[t]]2 → 1

10

e12 = e8
1

e11

{-−Sin[t], 0, Cos[t]}

Above: this is the unit tangent. The above answers agree with the text.
e14 = e12[{6, 1, 8}]

{-−Sin[t], 0, Cos[t]}[{6, 1, 8}]
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e13 = Show[ParametricPlot3D[{10 Cos[t], 1, 10 Sin[t]}, {t, -−3.275, 3},
PlotStyle → {Red, Thickness[0.005], Opacity[.4]}, ImageSize → 300],

ListPointPlot3D[{{6, 1, 8}, {0, 1, 0}}, PlotStyle → Blue],
ParametricPlot3D[{6 -− 8 w, 1, 8 + 6 w}, {w, -−1, 1},
PlotStyle → {Green, Thickness[0.005]}],

Graphics3D[{Text["{6,1,8}", {6.7, 1, 8.7}]}]]

27. r[t] = t,
1

t
, 0, P : 2,

1

2
, 0

ClearAll["Global`*⋆"]

By inspection it can be seen that P represents t=2, as demonstrated in e2.

e1 = r[t_] = t,
1

t
, 0

t,
1

t
, 0

e2 = r[2]

2,
1

2
, 0

e3 = r'[t]

1, -−
1

t2
, 0

e4 = r'[2]

1, -−
1

4
, 0
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e5 = e2 + w e4

2 + w,
1

2
-−
w

4
, 0

Above: the tangent of C:r[t], matching the answer in the text.
e9 = Norm[e3]

1 +
1

Abs[t]4

e10 =
e3

e9


1

1 + 1
Abs[t]4

, -−
1

t2 1 + 1
Abs[t]4

, 0

Above: this is the unit tangent. 

e13 = ShowParametricPlot3Dt,
1

t
, 0, {t, -−3.5, 3.5},

PlotStyle → {Red, Thickness[0.005], Opacity[.4]}, ImageSize → 300,

ListPointPlot3D2,
1

2
, 0, {0, 0, 0}, PlotStyle → Blue,

ParametricPlot3D2 + w,
1

2
-−
w

4
, 0, {w, -−1, 1},

PlotStyle → {Green, Thickness[0.005]},

Graphics3DText"{2,
1

2
,0}", {2.1, 1, 0}

29 - 32 Length
Find the length and sketch the curve.
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29 - 32 Length
Find the length and sketch the curve.

29.  Catenary r[t] = {t, Cosh[t]} from t = 0 to t = 1.

ClearAll["Global`*⋆"]

e1 = r[t_] = {t, Cosh[t]}

{t, Cosh[t]}

e2 = r'[t]

{1, Sinh[t]}

e3 = len = Integrate r'[t].r'[t] , {t, 0, 1}

Sinh[1]

e4 = N[Sinh[1]]

1.1752

Above in green: two values which agree with the answer in the text.
Show[ParametricPlot[{t, Cosh[t]}, {t, 0, 1},

PlotStyle → {Red, Thickness[0.005], Opacity[.4]}, ImageSize → 300],
ListPlot[{{0, Cosh[0]}, {1, Cosh[1]}}, PlotStyle → Blue],
AxesOrigin → Automatic]

31.  Circle r[t] = {a Cos[t], a Sin[t]} from {a, 0} to {0, a}.

ClearAll["Global`*⋆"]

e1 = r[t_] = {a Cos[t], a Sin[t]}

{a Cos[t], a Sin[t]}

e2 = r'[t]

{-−a Sin[t], a Cos[t]}
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e3 = len = Integrate r'[t].r'[t] , t, 0,
π

2


a2 π

2

Above: The answer shown agrees with the text. Integration limits based on initial values.

ShowParametricPlot{2 Cos[t], 2 Sin[t]}, t, 0,
π

2
,

PlotStyle → {Red, Thickness[0.005], Opacity[.4]}, ImageSize → 200,

ListPlot{2 Cos[0], 2 Sin[0]}, 2 Cos
π

2
, 2 Sin

π

2
, PlotStyle → Blue,

AxesOrigin → Automatic

33. Plane curve. Show that numbered line (10) on p. 385 implies ℓ = ∫a
b1 + (y')2 ⅆx 

for the length of a plane curve C: y = f[x], z = 0, and a = x = b.

I should show the numbered line (10) referred to in this problem

ℓ = 
a

b
r'.r' ⅆt

The symbol ℓ refers to the length of a line.

35 - 46 Curves in mechanics
Forces acting on moving objects (cars, airplanes, ships, etc.) require the engineer to know 
corresponding tangential and normal accelerations. In problems 35 - 38 find them, 
along with the velocity and speed. Sketch the path.

35.  Parabola r[t] = {t, t2, 0}. Find v and a.

ClearAll["Global`*⋆"]

e1 = rr[t_] = t, t2, 0

t, t2, 0
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e2 = rr'[t]

{1, 2 t, 0}

e3 = rr''[t]

{0, 2, 0}

Above: general acceleration.
e4 = v = Norm[rr'[t]]

1 + 4 Abs[t]2

Above: magnitude of the velocity.

e5 = aT =
e2.e3

e4
4 t

1 + 4 Abs[t]2

Above: the tangential acceleration.

e6 = aN =
Norm[Cross[e2, e3]]

Norm[e2]
2

1 + 4 Abs[t]2

Above: the normal acceleration.

Green cells above match the answer in the text. The formulas used here were used in my 
workthru of Ed9, and originally came from Larson p. 816.

37.  Cycloid r[t] = (R Sin[ω t]+R t)i +(R Cos[ω t] + R)j. This is the path of a point on 
the rim of a wheel of radius R that rolls without slipping along the x-axis. Find v and a at 
the maximum y-values of the curve.

ClearAll["Global`*⋆"]

First I’ll throw in an animation I found at https://mathematica.stackexchange.com/questions/8832/-
making-mathematical-animations-with-mathematica, which is surprisingly compact.
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Animate[Show[Graphics[
Translate[Rotate[{Circle[], Thick, Blue, Line[{{0, 0}, {0, -−1}}],

Red, PointSize[.02], Point[{0, -−1}]}, -−t], {t, 0}],
PlotRange → {{0, 4 Pi}, {-−2, 2}}, ImageSize → {Large, Tiny},
Axes → {True, False}, AxesOrigin → {0, -−1}],

ParametricPlot[{(a -− Sin[a]), (-−Cos[a])}, {a, 0, t},
PlotStyle → Directive[Thick, Orange]]],

{t, 0.001, 4 Pi}, AnimationRunning → False]

t

0 2 4 6 8 10 12

The site https://math.mit.edu/~mckernan/Teaching/12-13/Autumn/18.02/l_6.pdf give the formulas 
for velocity, speed, and acceleration along the cycloid path. The video at https://www.youtube.-
com/watch?v=xwkz1-8nxDc shows the scaled velocity vector in an animation. The velocity:
vel[t_] = {1 -− Cos[t], Sin[t]}

{1 -− Cos[t], Sin[t]}

reaches a max at t=π and t=3π, which is situated at the max value of y, the problem 
criterion.
FindMaximum[Norm[vel[t]], {t, 0}]

{2., {t → 9.42478}}

The speed there is the same as the norm of the velocity vector.

cycspeed[t_] = 2 (1 -− Cos[t])1/∕2

2 1 -− Cos[t]

FindMaximum[cycspeed[t], {t, 0}]

{2., {t → 9.42478}}

FindMaximum[x Cos[x], {x, 2}]

{0.561096, {x → 0.860334}}

The acceleration
cycaccel[t_] = {Sin[t], Cos[t]}

{Sin[t], Cos[t]}

seems to be constant. (Only shows here at the path beginning because that was the guess, I 
think.)
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seems to be constant. (Only shows here at the path beginning because that was the guess, I 
think.)
FindMaximum[Norm[cycaccel[t]], {t, 0}]
FindMaximum::fmgz: Encountereda gradientthatis effectively

zero. The resultreturnedmaynotbe a maximum; itmaybe a minimumor a saddlepoint. '

{1., {t → 0.}}

Since the problem asked for the acceleration at the top of the path,
cycaccel[9.424777965542201`]

-−4.77282 × 10-−9, -−1.

where the magnitude is
Norm[%]

1.

Looking now at the text answer, I see it does not seem to answer the questions asked in the 
problem description. However, I can interpret it to mean that not t = 0 is intended, but 
t=max-y-value, which is t = odd*n*π. For my part, I have to make adjustments for the ω, 
and the R, which I ignored before.
velta[t_] = {R (1 -− Cos[ω t]), R (Sin[ω t])}

{R (1 -− Cos[t ω]), R Sin[t ω]}

For some reason Mathematica will not simplify the result of the following, which would 
otherwise match the text answer.
velta[π]

{R (1 -− Cos[π ω]), R Sin[π ω]}

velta'[t]

{R ω Sin[t ω], R ω Cos[t ω]}

velta'[π]

{R ω Sin[π ω], R ω Cos[π ω]}

The Mathematica answers match the text answers, although Mathematica will not simplify 
them. For info, text shows v(0)=(ω+1)R i and a(0) = -ω2 R j as answers.

39 - 42 The use of a CAS may greatly facilitate the investigation of more complicated 
paths, as they occur in gear transmissions and other constructions. To grasp the idea, 
using a CAS, graph the path and find velocity, speed, and tangential and normal 
acceleration.

39.  r[t] = {Cos[t] + Cos[2t], Sin[t] - Sin[2t]}
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39.  r[t] = {Cos[t] + Cos[2t], Sin[t] - Sin[2t]}

ClearAll["Global`*⋆"]

e13 =
Show[ParametricPlot[{Cos[t] + Cos[2 t], Sin[t] -− Sin[2 t]}, {t, -−2 π, 2 π},

PlotStyle → {Red, Thickness[0.005], Opacity[.4]}, ImageSize → 200],
ListPlot[{{6, 1}, {0, 1}}, PlotStyle → Blue](*⋆,ParametricPlot[
{6-−8 w,1,8+6 w},{w,-−1,1},PlotStyle→{Green,Thickness[0.005]}],

Graphics3D[{Text["{6,1,8}",{6.7,1,8.7}]}]*⋆)]

e1 = positionfunction = r[t_] = {Cos[t] + Cos[2 t], Sin[t] -− Sin[2 t]}

{Cos[t] + Cos[2 t], Sin[t] -− Sin[2 t]}

e2 = velocityfunction = r'[t]

{-−Sin[t] -− 2 Sin[2 t], Cos[t] -− 2 Cos[2 t]}

e3 = accelerationfunction = r''[t]

{-−Cos[t] -− 4 Cos[2 t], -−Sin[t] + 4 Sin[2 t]}

Above: general acceleration.
e4 = magnitudeofvelocity = Norm[r'[t]]

Abs[Cos[t] -− 2 Cos[2 t]]2 + Abs[-−Sin[t] -− 2 Sin[2 t]]2

Above: magnitude of the velocity.
e41 = velocitymagnitudesquared = e42

Abs[Cos[t] -− 2 Cos[2 t]]2 + Abs[-−Sin[t] -− 2 Sin[2 t]]2

e42 =
FullSimplify(Cos[t] -− 2 Cos[2 t])2 + (-−Sin[t] -− 2 Sin[2 t])2 ⩵ 5 -− 4 Cos[3 t]

True
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e43 = 5 -− 4 Cos[3 t]

5 -− 4 Cos[3 t]

Above: Mathematica verifies that the text answer for +v,2 agrees with the tangled forest 
above. (I did remove the absolute value restrictions for the test, since they did not show up 
in the text answer.)

e5 = aT =
e2.e3

e43
1

5 -− 4 Cos[3 t]
((-−Cos[t] -− 4 Cos[2 t]) (-−Sin[t] -− 2 Sin[2 t]) +

(Cos[t] -− 2 Cos[2 t]) (-−Sin[t] + 4 Sin[2 t]))

e6 = FullSimplify[e5]

6 Sin[3 t]

5 -− 4 Cos[3 t]

Above: this would be the tangential acceleration, except it needs a v.

prime dot doubleprime divided by magnitude of velocity.
e8 = tangentialacceleration = e6 e2


6 (-−Sin[t] -− 2 Sin[2 t]) Sin[3 t]

5 -− 4 Cos[3 t]
,
6 (Cos[t] -− 2 Cos[2 t]) Sin[3 t]

5 -− 4 Cos[3 t]


Above: the actual tangential acceleration, but more complicated than the text answer.

e9 = aN =
Norm[Cross[e2, e3]]

Norm[e2]
Cross::nonn1: The argumentsare expectedtobe vectorsof

equallength, andthenumberof argumentsis expectedtobe 1 lessthantheirlength. '

Norm[{-−Sin[t] -− 2 Sin[2 t], Cos[t] -− 2 Cos[2 t]}⨯

{-−Cos[t] -− 4 Cos[2 t], -−Sin[t] + 4 Sin[2 t]}] 

Abs[Cos[t] -− 2 Cos[2 t]]2 + Abs[-−Sin[t] -− 2 Sin[2 t]]2

Above, oops, this is only 2 dimensional. How to get normal acceleration? Looks like I need 
ⅆu
ⅆs 

ⅆs
dt 

2 where u is the unit tangent vector and s is the speed, or norm of velocity. And 
u = r'[t]

+r'[t], .
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e10 = u =
e2

e4


-−Sin[t] -− 2 Sin[2 t]

Abs[Cos[t] -− 2 Cos[2 t]]2 + Abs[-−Sin[t] -− 2 Sin[2 t]]2
,

Cos[t] -− 2 Cos[2 t]

Abs[Cos[t] -− 2 Cos[2 t]]2 + Abs[-−Sin[t] -− 2 Sin[2 t]]2


Above: hold on, looks like it’s getting complicated. The text mentions an easier way: normal 
acceleration is general acceleration minus tangential acceleration.
e11 = e3 -− e6

-−Cos[t] -− 4 Cos[2 t] -−

6 Sin[3 t]

Abs[Cos[t] -− 2 Cos[2 t]]2 + Abs[Sin[t] + 4 Cos[t] Sin[t]]2
, -−Sin[t] +

4 Sin[2 t] -−
6 Sin[3 t]

Abs[Cos[t] -− 2 Cos[2 t]]2 + Abs[Sin[t] + 4 Cos[t] Sin[t]]2


Above: this would be the normal acceleration. How to simplify? I notice that the text does 
not bother to report the normal acceleration, so I could just skip it.

e12 = FullSimplify(Cos[t] -− 2 Cos[2 t])2 + (Sin[t] + 4 Cos[t] Sin[t])2

5 -− 4 Cos[3 t]

e13 = normalacceleration =
e11 /∕. Abs[Cos[t] -− 2 Cos[2 t]]2 + Abs[Sin[t] + 4 Cos[t] Sin[t]]2 -−>

5 -− 4 Cos[3 t]

-−Cos[t] -− 4 Cos[2 t] -−
6 Sin[3 t]

5 -− 4 Cos[3 t]
,

-−Sin[t] + 4 Sin[2 t] -−
6 Sin[3 t]

5 -− 4 Cos[3 t]


Above: that looks quite a bit better. However, I don’t see a path to anything simpler.

41.  r[t] = {Cos[t], Sin[2t], Cos[2t]}

ClearAll["Global`*⋆"]

e1 = positionfunction = r[t_] = {Cos[t], Sin[2 t], Cos[2 t]}

{Cos[t], Sin[2 t], Cos[2 t]}

24     9.5 Curves. Arc Length. Curvature. Torsion 381.nb



e2 = velocityfunction = r'[t]

{-−Sin[t], 2 Cos[2 t], -−2 Sin[2 t]}

e3 = accelerationfunction = r''[t]

{-−Cos[t], -−4 Sin[2 t], -−4 Cos[2 t]}

Above: general acceleration.
e4 = magnitudeofvelocity = Norm[r'[t]]

4 Abs[Cos[2 t]]2 + Abs[Sin[t]]2 + 4 Abs[Sin[2 t]]2

Above: magnitude of the velocity.
e5 = squareofvelocity = e42

4 Abs[Cos[2 t]]2 + Abs[Sin[t]]2 + 4 Abs[Sin[2 t]]2

e6 = e5 /∕. 4 Abs[Cos[2 t]]2 + Abs[Sin[t]]2 + 4 Abs[Sin[2 t]]2 → 4 + Sin[t]2

4 + Sin[t]2

Above: hand simplification.

e6 =
e2.e3

e6

Cos[t] Sin[t]

4 + Sin[t]2

Above: tangential acceleration, but it is incomplete, because it needs to be multiplied by v.
e7 = e6 e2

-−
Cos[t] Sin[t]2

4 + Sin[t]2
,
2 Cos[t] Cos[2 t] Sin[t]

4 + Sin[t]2
, -−

2 Cos[t] Sin[t] Sin[2 t]

4 + Sin[t]2


e7 = normalacceleration =
Norm[Cross[e2, e3]]

Norm[e2]

Abs[-−4 Cos[2 t] Sin[t] + 2 Cos[t] Sin[2 t]]2 +

Abs[2 Cos[t] Cos[2 t] + 4 Sin[t] Sin[2 t]]2 +

Abs-−8 Cos[2 t]2 -− 8 Sin[2 t]22 

4 Abs[Cos[2 t]]2 + Abs[Sin[t]]2 + 4 Abs[Sin[2 t]]2

Again, normal acceleration is a mess. Try it the other way.
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e8 = normalacceleration = e3 -− e6

-−Cos[t] -−
Cos[t] Sin[t]

4 + Sin[t]2
,

-−
Cos[t] Sin[t]

4 + Sin[t]2
-− 4 Sin[2 t], -−4 Cos[2 t] -−

Cos[t] Sin[t]

4 + Sin[t]2


e9 = FullSimplify[e8]

Cos[t] -−1 +
2 Sin[t]

-−9 + Cos[2 t]
,

-−4 +
1

-−9 + Cos[2 t]
Sin[2 t], -−4 Cos[2 t] +

Sin[2 t]

-−9 + Cos[2 t]


Above: I don’t see much to choose between e8 and e9.
e10 = ParametricPlot3D[{Cos[t], Sin[2 t], Cos[2 t]}, {t, 0, 2 π},

PlotStyle → {Red, Thickness[0.005], Opacity[.4]}, ImageSize → 300]

43.  Sun and Earth. Find the acceleration of the Earth toward the sun from numbered line 
(19) on p. 387 and the fact that Earth revolves about the sun in a nearly circular orbit 
with an almost constant speed of 30 km/s.

ClearAll["Global`*⋆"]

Centripetal acceration is v2r , so the first thing to try is 900
distance-−to-−sun

TableN
900

n *⋆ 108
, {n, {1.46, 1.52}}

6.16438 × 10-−6, 5.92105 × 10-−6

The text answer says 5.98*10-−6 which is in the above range, based on max to min distance, 
found on https://www.windows2universe.org/?page=/earth/statistics.html, which is why I award a 
green here. Anyway, the acceleration works out to be in km/sec2.
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The text answer says 5.98*10-−6 which is in the above range, based on max to min distance, 
found on https://www.windows2universe.org/?page=/earth/statistics.html, which is why I award a 
green here. Anyway, the acceleration works out to be in km/sec2.

45.  Satellite. Find the speed of an artificial Earth satellite traveling at an altitude of 80 
miles above Earth’s surface, where g = 31 ft/sec2. (The radius of the Earth is 3960 miles.)

ClearAll["Global`*⋆"]

Using the same formula as above, v2r = acentripetal 

Solve
v2

3960 *⋆ 5280
⩵ 31, v

v → -−2640 93 , v → 2640 93 

N2640 93 

25 459.2

The above yellow does not match exactly with the text answer, which prompts the test 
below.

NSolve
(25700)2

3960 *⋆ 5280
⩵ a, a

{{a → 31.5891}}

I think the above shows that the given values in the problem were not observed by the text 
answer.

47 - 55 Curvature and torsion

47.  Circle. Show that a circle of radius a has a curvature 1/a.

ClearAll["Global`*⋆"]

The concept of curvature revolves around the idea of how much a curve “bends” for each 
unit of advance, s. The definition in the text is on p. 389. The idea of a center of curvature 
is not necessary for the text, only the idea of a unit tangent, and the rate of change of the 
tangent is judged for the degree of curvature. I’m going with a different idea, as described 
on https://www.solitaryroad.com/c361.html and at other places, and shown in the figure below. 
A unit circle. A full trip around is worth 2πR in terms of s, and the 2π can be fractionated, 
so that for any advance, Δs = RΔθ. This simple model boils down to
accumulated angle

accumulated advance
=

Δθ

Δs
=

Δθ

RΔθ
=
1

R
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sR
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-−1.0

-−0.5

0.5

1.0

See problem 49 for more on curvature.

49.  Plane curve. Using numbered line (22*) on p. 389, show that for a curve y = 
f[x]

κ[x] = y''

1+(y')232
where y' = dy

dx
, etc.

(Note: Problem 49 calls for reference to numbered line (22*), but no such numbered line 
exists in the present section. Numbered line (22) looks like it deals with related matter and 
it reads: κ (s) = u' (s) = r'' (s)  )

ClearAll["Global`*⋆"]

The equation in the problem is the one shown as the formula for curvature on many sites, 
for example https://www.intmath.com/applications-differentiation/8-radius-curvature.php. Trying to 
keep it as simple as possible, the demonstration begins with the statement that the curva-
ture is equal to

K = Limit
Δθ

Δs
, θ → 0 =

ⅆθ

ⅆs

the chain rule enters here, as
ⅆθ

ⅆs
=

ⅆθ

ⅆx

ⅆx

ⅆs

and so the two derivatives on the right have to be accounted for. Noting that

Tan[θ] =
ⅆy

ⅆx
⇒ θ = ArcTan

ⅆy

ⅆx
 ⇒

ⅆθ

ⅆx
=

ⅆ

ⅆx
ArcTan

ⅆy

ⅆx


The last term can be handled by Mathematica without sweat,
D[ArcTan[y'[x]], x]
y′′[x]

1 + y′[x]2

It will still be necessary to find ⅆx
ⅆs . Scrounging around on the level of tiny limits makes two 

things possible. First, Δs can be treated as a straight line. Second, derivatives can be treated 
like fractions. So in considering the following diagram, where s is a portion of the curve I 
am investigating, I will have
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It will still be necessary to find ⅆx
ⅆs . Scrounging around on the level of tiny limits makes two 

things possible. First, Δs can be treated as a straight line. Second, derivatives can be treated 
like fractions. So in considering the following diagram, where s is a portion of the curve I 
am investigating, I will have

Δy

Δx

Δs

Δs2 = Δx2 + Δy2 ⇒
Δs2

Δx2
=

Δx2

Δx2
+

Δy2

Δx2
⇒

Δs2

Δx2
= 1 +

Δy2

Δx2
⇒

Δs

Δx
= 1 +

Δy2

Δx2
⇒

ⅆs

ⅆx
= 1 +

ⅆy

ⅆx

2

and finally
ⅆx

ⅆs
=

1

1 + (y'[x])2

So that,

K =
y′′[x]

1 + y′[x]2
*⋆

1

1 + (y'[x])2

y′′[x]

1 + y′[x]23/∕2

Demonstrating what was intended. However, the numerator is not protected against nega-
tive values, as the problem description suggests. I did not see this refinement on any of the 
sites I browsed. Reading over this site: https://math.stackexchange.com/questions/2118029/what-is-
the-meaning-of-second-derivative/2118081, I did not get the idea that the formula couldn’t work 
with a negative second derivative of y, but I may have missed something. Problem 49 did 
say to use numbered line ( 22*), and if it meant instead to use (22), that would constrain 
the result to the absolute value of the second derivative.
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